

Modernste Klebstoffsysteme für Anwendungen in der Automobil- und Fahrzeugindustrie:

Elektromotoren
Zellkontaktiersysteme
Thermomanagement
Fahrzeugelektronik
Ladestationen
Interieur

Klebstoffe für Automotive und E-Mobility

Kleben in der Automobilproduktion ist als Fügetechnologie nicht mehr wegzudenken: Bauteile in Karosserie, Motor oder Innenraum, die früher gelötet, verschraubt oder geschweißt werden mussten, können heute sicher, stabil und vor allen Dingen gewichtsparender verklebt werden. Die Klebstoffe von Panacol kommen vor allem in der Fahrzeug-Elektronik und in Sensoren zum Einsatz. Dabei werden die technischen, mechanischen und physikalischen Anforderungen an die Klebstoffe hinsichtlich Verschleißes sowie Chemikalien- und Temperaturbeständigkeiten immer höher. Panacol entwickelt maßgeschneiderte Klebstoff-Lösungen, welche die hohen Anforderungen der Automobilindustrie erfüllen. Hierbei werden sowohl bewährte als auch innovative Systeme zum bestmöglichen Kundennutzen kombiniert.

E-Mobility

Den speziellen Anforderungen der Elektromobilität angepasste Klebstoffe ermöglichen schnellere und effizientere Abläufe bei der Produktion von Zellkontaktiersystemen, Batteriepacks und Ladesystemen. Auch im Thermomanagement, als Anti-Korrosionsbeschichtung und Vibrationsschutz kommen unsere Produkte zum Einsatz. Für verschiedenste Anwendungen stehen hier spezielle Klebstoff-, Verguss- und Dichtsysteme zur Verfügung.

Magnetverklebung für E-Motoren

mehr Infos auf Seite 4

Bei Elektroantrieben sind Leistung, Gewicht und

Platzersparnis entscheidend. Klebstoffe sind die

perfekte Lösung für deren Herstellung, da sie nicht

nur das Magnetfügen optimieren, sondern auch die

Spulenwicklungen schützen und isolieren können.

mehr Infos auf Seite 4 + 5

Zellkontaktiersysteme

Leistungsfähige Batteriepacks und Zellkontaktiersysteme (ZKS) für Elektro- und Hybridfahrzeuge setzen leistungsfähige Klebstoffe voraus. Speziell für die elektrische Kontaktierung sowie die Abdichtung von Schweißstellen bietet Panacol maßgeschneiderte Klebstoffe an.

mehr Infos auf Seite 4

Ladeinfrastruktur für Elektrofahrzeuge

Ob zur vibrations- und temperaturbeständigen Befestigung von elektronischen Bauteilen auf Platinen in Ladestationen oder dem Schutz sensibler Kontakte vor Feuchtigkeit in Ladekabeln: Klebstoffe sind für eine Vielzahl von Anwendungen geeignet.

mehr Infos auf Seite 5

UV-Aushärtesysteme

Passende UV- und UV-LED-Geräte für die Aushärtung der UV-Klebstoffe finden Sie auf

Seite 12

Sensorik

Unter teils harschen Umgebungsbedingungen müssen Sensoren ausfallsfrei funktionieren. Unser Portfolio bietet Klebstoffe für Wärmeableitung, elektrische Kontaktierung und Abschirmung, sowie Fixierung und Schutz der Sensoren.

mehr Infos auf Seite 4 - 8

Thermomanagement

Egal ob Batteriepacks, Elektroantriebe oder elektronische Bauteile:
Überall, wo Elektrizität vorhanden ist, entsteht Abwärme.
Unerlässlich ist daher die effiziente Kühlung – am besten unterstützen hier wärmeableitende

mehr Infos auf Seite 4

Klebstoffe.

Fahrzeugelektronik

Von leitfähigen Klebstoffen bis hin zu Produkten für die Befestigung von Surface Mounted Devices (SMDs) auf Leiterplatten: Das Panacol-Portfolio bietet beim Verkleben und Sichern von Elektronikbauteilen zahlreiche Möglichkeiten.

mehr Infos ab Seite 6 - 8

CIPG-Dichtsysteme

Klebstoffe können im Automobilbereich als Cured in Place Gaskets (CIPG) eingesetzt werden. CIPGs werden flüssig auf komplexe Geometrien appliziert und dann mit UV-Licht ausgehärtet.

mehr Infos auf Seite 11

Kamerasysteme/ADAS, Lidar

Viele Komponenten in Fahrassistenzsystemen (ADAS - Advanced Driver Assistance Systems) werden verklebt. Unsere Spezialklebstoffe sind auf die jeweiligen Materialien abgestimmt und werden zur Verklebung von Kunststoffgehäusen oder zur Fixierung von Linsen eingesetzt.

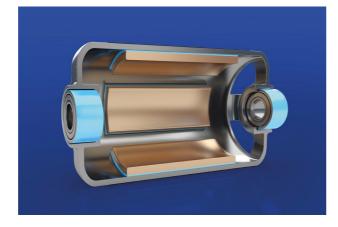
mehr Infos auf Seite 9

Interior/Dashboard

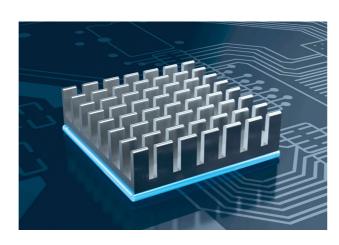
Bauteile im Dashboard oder Zierelemente und Displays können mit Panacol-Produkten zuverlässig verklebt und abgedichtet werden. Sie tragen auch zur Veredelung von Human Machine Interfaces (HMI) und In-Mold Electronics (IME) bei.

mehr Infos auf Seite 11

Lichtmanagement


Klebstoffe für Licht und Scheinwerfer im Innen- und Außenbereich werden meist verwendet, um die Kunststoffgehäuse zu verkleben, um LEDs auf Chips zu fixieren oder als Linsen selbst für das Streulicht von Light Carpets.

mehr Infos auf Seite 10


E-Motoren

Elektrische Antriebe werden immer leistungsfähiger und effizienter. Gleichzeitig verringert sich das Bauteilvolumen. Dadurch steigt der Anspruch an die Materialien hinsichtlich der mechanischen, chemischen und thermischen Beständigkeit, um einen langlebigen Betrieb zu gewährleisten. Klebstoffe erfüllen diese Anforderungen, haften auf verschiedenen Metallen, Ferriten sowie Kupferspulen und sind für eine Vielzahl von Anwendungen geeignet, wie etwa Verklebung von Statorpaketen bis hin zum Verguss von Stabmagneten.

Zellkontaktiersysteme (ZKS)

Eine effiziente Kontaktierung von Zellsystemen in Batterien bei gleichzeitiger Flexibilität kann nur mit Klebstoffen erreicht werden. Diese kompensieren die unterschiedlichen thermischen Ausdehnungskoeffizienten der zu verbindenden Materialien. Speziell entwickelte UV-Glob-Tops und Coatings schützen vor Korrosion und bieten gleichzeitig ein hohes Haftvermögen auf den zu schützenden Oberflächen. Nicht nur für Batteriezellen, auch für Module und Battery Packs eignen sich unsere Klebstofflösungen.

Thermomanagement

Im gesamten Fahrzeug befinden sich Bauteile, die während des Betriebs Wärme erzeugen. Zusätzlich werden diese Komponenten immer kleiner und leistungsstärker, wodurch auch die thermische Belastung zunimmt. Dies verkürzt nicht nur die Lebensdauer, sondern verringert auch die Performance. Speziell entwickelte Klebstoffe bieten eine effiziente Wärmeableitung und ermöglichen eine formschlüssige, mechanisch stabile Leichtbauweise. Sie finden Anwendung bei der Fertigung von Batterien, Elektromotoren, Steuergeräten, Sensoren und Scheinwerfern.

Dualhärtende Klebstoffe

härten mittels UV-Licht und Feuchte aus. Sie kommen bei Bauteilen zum Einsatz, deren Substrate nur teilweise lichtdurchlässig sind und die über Schattenbereiche verfügen. Der Polymersationsprozess wird hierbei durch die Bestrahlung mit UV-Licht initiiert und setzt sich in schattigen Bereichen durch den Kontakt des Klebstoffs zur Luftfeuchtigkeit und zur vorhandenen Feuchtigkeit auf den Substraten fort.

Ladeinfrastruktur für Elektrofahrzeuge

Auch in Ladestationen für E-Autos kommen Kleb- und Dichtstoffe zum Einsatz. Diverse SMD-Bauteile werden hierbei auf der Leiterplatte schock- und vibrationsbeständig verklebt bzw. vergossen. Durch Conformal Coatings können diese Bauteile zusätzlich vor Temperaturschwankungen, Feuchtigkeit und anderen Klimaeinflüssen sicher geschützt werden. Für die Einhausung der Elektronikkomponenten werden sogenannte Cured-In-Place-Gaskets (CIPG) verwendet, welche das Gehäuse gegen das Eindringen von Flüssigkeiten und Feuchtigkeit abdichten.

Be m ne zu ha sie

Steckerverguss

Beim Verguss von Steckern, Schaltern und Relais kommen vor allem raumtemperaturhärtende, zweikomponentige (2K) oder thermisch härtende (1K) Klebstoffe zum Einsatz. Panacol bietet darüber hinaus UV-lichthärtende Produkte, die sich dadurch auszeichnen, dass sie auch in dicken Schichtstärken schnell aushärtbar sind. Daraus resultieren kürzere Taktzeiten in der Produktion. Unsere Produkte überzeugen zudem durch geringen Halogengehalt und erfüllen somit höchste Standards der Elektronikindustrie.

Klebstoffausw	ahl für E-Mobility				
Klebstoff	Anwendung	Viskosität [mPas]	Basis	Aushärtung*	Eigenschaften
Vitralit® UV E-2113	Zellkontaktiersysteme, Litzenkorrosionsschutz	25.000 - 35.000 Rheometer 10s ⁻¹	Acrylat	UV/VIS	Schnelle Aushärtung, hohe Medienbeständigkeit
Vitralit [®] UV E-2115	Cell Block Spacer, Batteriepacks	80.000 - 120.000 Rheometer 10s ⁻¹	Acrylat	UV/VIS	Hoher Thixotropieindex
Vitralit ® UD 5180	Verkapselung der Löt- & Schweiß- stellen von Konnektoren	4.000 - 6.000 Rheometer 10s ⁻¹	1K-Epoxid	UV/thermisch	Gute Haftung auf Flexleitern, halogenarm
Vitralit [®] UD 4292 F	Kugellager E-Motoren	40 - 70 LVT, Sp.2/30 rpm	Acrylat	UV/VIS/ anaerob	Kapillar einfließend, anaerobe Nachhärtung
Vitralit® UD 8050	Schweißstellenverguss Zellkontaktiersysteme	8.000 - 11.000 Rheometer 5s ⁻¹	Acrylat	UV/VIS/ Feuchte	Jetbar, feuchtenachhärtend, halogenarm
Vitralit® UD 8055	Batteriepacks Zellkontaktiersysteme	4.000 - 7.000 Rheometer 10s ⁻¹	Acrylat	UV/VIS/ Feuchte	Hoher Tg, feuchtenachhärtend, tiefe Durchhärtung
Vitralit® E-VBB-1	Steckerverguss	1.300 - 1.600 Rheometer 10s ⁻¹	Acrylat	UV/VIS	Sehr flexibel, spannungsausgleichend
Elecolit® 6207	Thermomanagement, Verguss	9.000 - 12.000	2K-Epoxid	RT/thermisch	UL94 V-0, thermisch leitfähig
Elecolit® 6603	Thermomanagement	20.000 - 40.000 Rheometer 10s ⁻¹	1K-Epoxid	thermisch	UL94 HB, gute Metallhaftung, thermisch leitfähig
Structalit® 5802	Kondensatorverklebung Cornerbond	40.000 - 65.000 Rheometer 10s ⁻¹	2K-Exopid	RT/thermisch	Generelles strukturelles Verkleben, gute dielektrische Eigenschaften
Structalit® 5803	Magnetverklebung	100.000 - 160.000 Rheometer 10s ⁻¹	2K-Epoxid	RT/thermisch	Hoher Tg, schlagzäh
Structalit® 5858	Magnetverklebung	82.000 - 100.000 Rheometer 10s ⁻¹	1K-Epoxid	thermisch	Hoher Tg, schlagzäh, hohe Festigkeit
Structalit® 8801	strukturelle Verklebung, Magnetverklebung, Verguss	30.000 - 45.000 LVT, Sp.4/6 rpm	1K-Epoxid	thermisch	Gute Ölbeständigkeit, niedrige Ausgasung, hoher Tg

*UV = 320 - 390 nm; VIS = 405 nm, RT = Raumtemperatur

 $oldsymbol{4}$

Fixierung von elektronischen Bauteilen und Bauteilsicherung

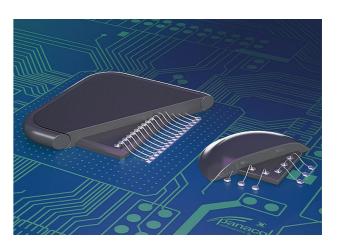
Das Anwendungsgebiet von Klebstoffen in der Fahrzeugelektronik ist vielseitig, erfüllen sie hier nicht nur den Zweck der mechanischen Befestigung. Vielmehr schützen sie die empfindlichen Bauteile vor Umgebungseinflüssen oder dienen zur elektrischen Abschirmung.

UV- und Strukturklebstoffe eignen sich für die Befestigung und Sicherung von elektronischen Komponenten (SMDs) auf Leiterplatten.

In Flip-Chip-Verfahren werden für die Unterfüllung (Underfill) von Halbleiter Chips (Ball Grid Arrays - BGA) kapillar einfließende Klebstoffe benötigt, um eine einfache und schnelle Applikation auch in kleinste Spalten zu ermöglichen.

Eine Alternative zum klassischen Unterfüllen stellt Edge und Corner Bonding dar. Hierbei wird der Klebstoff nur an den Ecken und nicht flächig unter dem ganzen Bauteil aufgetragen. Dadurch können Bauteile vor dem Reflow-Löten fixiert werden und sind somit während des Lötprozesses vor Verrutschen gesichert

Frame and Fill ist ein interessantes Konzept, bei dem zwei unterschiedlich viskose Spezialklebstoffe nass-in-nass appliziert werden. Zunächst wird mittels standfesten Klebstoffs ein Rahmen (Frame) gezogen und anschließend mit niedrigviskosem Klebstoff (Fill) aufgefüllt. Diese Klebstoffe gibt es als einkomponentige, thermisch härtende Systeme (meist schwarz eingefärbt) oder als transparente UV-härtbare Systeme, mit denen sich sehr kurze Taktzeiten realisieren lassen und die thermische Belastung bei der Aushärtung minimiert wird.


Alle Klebstoffe für den Elektronikbereich sind nahezu halogenfrei und erfüllen die hohen Anforderungen des Automotive-Bereichs bezüglich Haftung, Temperatur-, Chemikalien-, Vibrations- und Klimabeständigkeit. Darüber hinaus lassen sich viele Klebstoffe individuell auf die jeweilige Anwendung anpassen. Für eine optimale Kontrolle in der Fertigung kann beispielsweise eine farbliche Einfärbung oder eine resultierende Fluoreszenz sinnvoll sein. Auch bezüglich der rheologischen Eigenschaften eignen sich Panacols (SMD) Klebstoffe für präzise Applikationsverfahren wie Siebdruck oder Jet-Dosierung.

Typische Kleb	stoffe für Fixierung von ele	ktronischen Bauteile	n			
Klebstoff	Anwendung	Viskosität [mPas]	Basis	Aushärtung*	Halogen- freiheit	Eigenschaften
Strucalit® 3060-1	Befestigung von elektr. Komponenten	4.000 - 8.000 Rheometer, 10s ⁻¹	1K-Epoxid	thermisch	•	Sehr schnelle Aushärtung, hohe Flexibilität
Stuctalit® 5604	Bauteilsicherung SMD	25.000 - 40.000 Rheometer, 10s ⁻¹	1K-Epoxid	thermisch	•	Rote Farbe, beständig bei Löttemperaturen bis 270 $^{\circ}\mathrm{C}$
Structalit® 8202	Underfill	300 - 400 Rheometer, 10s ⁻¹	1K-Epoxid	thermisch	•	Kapillar einfließend, hoher Tg
Vitralit® E-1671	NTC Glop Top, Frame	9.000 - 14.000 Rheometer, 10s ⁻¹	1K-Epoxid	UV/thermisch	•	Standfest, geringe Wasseraufnahme, hoher Tg
Vitralit® 1605	Fill	200 - 400 LVT, Sp.2/30 rpm	1K-Epoxid	UV/thermisch	•	Ionenreinheit, hoher Tg
Vitralit® 6104 VT	Kondensatorfixierung	8.000 - 17.000 Rheometer, 10s ⁻¹	Acrylat	UV/thermisch	•	Standfest, hohe Temperaturbeständigkeit
Structalit® 5704	Frame	60.000 - 100.000 Rheometer, 10s ⁻¹	1K-Epoxid	thermisch	•	Schwarz, standfest, hoher Tg
Structalit® 5720	Fill	10.000 - 15.000 Rheometer, 5s ⁻¹	1K-Epoxid	thermisch	•	Hoher Tg

Verkapselung auf High-Power Electronics (Powertrain)

Klebstoffe werden als Verkapselung (Glob Top) für empfindliche, elektronische Komponenten eingesetzt, um diese vor mechanischen, thermischen und chemischen Einflüssen zu schützen. Wichtig hierbei sind gute dielektrische Eigenschaften, wie eine hohe Durchschlagsfestigkeit, Kriechstromfestigkeit (CTI) und ein hoher spezifischer Widerstand, um eng beieinanderliegende elektrische Kontakte voneinander abzuschirmen. Darüber hinaus schützen Verkapselungen sensible Bauteile vor direktem Zugriff und Manipulation.

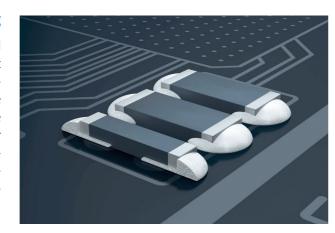
Klebstoffausw	(lebstoffauswahl für Verkapselung									
Klebstoff	Anwendung	Viskosität [mPas]	Basis	Aushärtung*	Halogen- freiheit	Eigenschaften				
Vitralit [®] UD 5180	Verkapselung auf Flexleitern	4.000 - 6.000 Rheometer 10s ⁻¹	1K-Epoxid	UV/thermisch	•	Gute Haftung auf PI				
Structalit® 5891	Glob Top	25.000 - 50.000 Rheometer 10s ⁻¹	1K-Epoxid	thermisch	•	Gute Schockbeständigkeit, gute chemische Beständigkeit				
Structalit® 5894 M	Verguss von Leiter- platten in Füllstand- sensoren	20.000 - 30.000 Rheometer 20s ⁻¹	1K-Epoxid	thermisch	•	Schwarz, hohe Medienbeständigkeit				
Structalit® 8801	Glob Top, Verguss	30.000 - 45.000 LVT, Sp.4/6 rpm	1K-Epoxid	thermisch	•	Gute Ölbeständigkeit, hohe Haftung auf FPCB und PCB				

*UV = 320 - 390 nm; VIS = 405 nm; RT = Raumtemperatur • = Semicon-grade: DIN-EN ISO 10304-1 (D20) • = Electronic-grade: (IEC 61249-2-21)

Vergussmassen

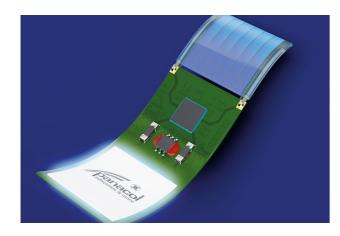
Bei der Auswahl der passenden Vergussmasse spielen neben der Bauteilgeometrie weitere Faktoren, wie die Oberflächenbeschaffenheit der Substrate oder der Wärmeausdehnungskoeffizient (CTE) eine entscheidende Rolle. Zusätzlich trägt die Konzipierung des Fertigungsprozesses maßgeblich zur Qualität des Vergusses bei: Für manche Produkte ist ein Verguss bei erhöhter Temperatur oder unter Vakuum empfehlenswert. Auch UV-Härtung ist bei manchen Anwendungen denkbar. Panacol bietet hier eine breite Produktauswahl an.

Klebstoffausw	Klebstoffauswahl für Verguss										
Klebstoff	Anwendung	Viskosität [mPas]	Basis	Aushärtung*	Eigenschaften						
Vitralit® 1605	partieller Verguss/Coating	200 - 400 LVT, Sp. 2/30 rpm	1K-Epoxid	UV/thermisch	Ionenreinheit, hoher Tg						
Elecolit® 6601	wärmeableitender Verguss	12.000 - 20.000 LVT, Sp. 4/6 rpm	1K-Epoxid	thermisch	Hoher Tg, hervorragende Fließeigenschaften						
Elecolit® 6608	Hochtemperaturverguss	10.000 - 15.000 Rheometer 10s ⁻¹ 40°C	1K-Epoxid	thermisch	Niedriger CTE, hoher Tg, UL94 V-0						
Structalit® 5801	Verguss von Leiterplatten	12.000 - 22.000 Rheometer 10s ⁻¹	2K-Epoxid	RT/thermisch	Gute Chemikalienbeständigkeit, gute dielektrische Eigenschaften						


*UV = 320 - 390 nm; VIS = 405 nm, RT = Raumtemperatur

6 7

Fahrzeugelektronik / elektrisch leitfähig Optische Systeme


Elektrische Kontaktierung oder Abschirmung

In kaum einem Bereich sind Miniaturisierung und Leistungsdichte so weit fortgeschritten und relevant wie in der Fahrzeugelektronik. Punktgenauer Materialauftrag in komplexer Bauteilgeometrie, schnelle Aushärtung und letztendlich eine formschlüssige und langzeitbeständige Materialverbindung sind hier unerlässlich. Besonders im Hinblick auf die klassischen Lötverfahren sind heutzutage niedrige Aushärtetemperaturen, ein geringer elektrischer Übergangswiderstand und verlässliche Performance gefragt.

Auswahl elek	Auswahl elektrisch leitfähige Klebstoffe									
Klebstoff	Anwendung	Viskosität [mPas]	Basis	Volumenwider- stand (Ω • cm)	Aushärtung*	Eigenschaften				
Elecolit® 3025	wärmeempfindliche Bauteile	80.000 - 90.000 Rheometer 10s ⁻¹	2K-Epoxid	10 ⁻³	RT/thermisch	Aushärtung bei Raumtemperatur				
Elecolit® 3653	Potting für Leiterplatten	4.000 - 8.000 Rheometer 10s ⁻¹	1K-Epoxid	10 ⁻³	thermisch	Vibrationsbeständig				
Elecolit® 3655	SMD Packaging, LED Die Attach	5.000 - 15.000 Rheometer 10s ⁻¹	1K-Epoxid	10 ⁻⁴	thermisch	Hoher Tg, ionenrein				
Elecolit® 3656	SMD Packaging, LED Die Attach	50.000 – 70.000 Rheometer 10s ⁻¹	1K-Epoxid	10 ⁻³	thermisch	Standfest, hohe Dimensionsstabilität, für Jetting geeignet				
Elecolit® 3661	flexible Schaltungs- träger, Die Attach	20.000 – 40.000 Rheometer 10s ⁻¹	1K-Epoxid	10 ⁻³	thermisch	Standfest, hohe Dimensionsstabilität				

*UV = 320 - 390 nm; VIS = 405 nm, RT = Raumtemperatur

Flexible und gedruckte Elektronik

Um Designelemente auf gekrümmten Oberflächen zu realisieren, kommen in der Fahrzeugelektronik immer häufiger flexible Substrate (Flex PCB / FPCB) zum Einsatz. Für solche Anwendungen bietet Panacol besonders elastische Klebstoffe mit niedriger Aushärtetemperatur, guter elektrische Leitfähigkeit und hoher chemischer, mechanischer und thermischer Beständigkeit (z.B. gegen Reflowprozesse). Einige der Klebstoffe bieten sehr schnelle Aushärtezeiten (Snap Cure) oder Härtung mittels Thermode bzw. Hot Press.

Auswahl flexib	Auswahl flexible Klebstoffe								
Klebstoff	Anwendung	Viskosität [mPas]	Basis	Aushärtung*	Eigenschaften				
Vitralit® E-4451 MV F	Coating auf FPCB	2.000 - 3.000 Rheometer 10s ⁻¹	Acrylat	UV/VIS/ thermisch	Elastisch, trockene Oberfläche				
Elecolit® 3647-1	Leiterbahnkontaktie- rung auf FPCB	7.000 - 12.000 Rheometer 10s ⁻¹	1K-Epoxid	thermisch	Elektrisch leitfähig				
Elecolit® 3648	Leiterbahnkontaktie- rung auf FPCB	10.000 - 15.000 Rheometer 10s ⁻¹	1K-Epoxid	thermisch	Elektrisch leitfähig, Aushärtung ab 80 °C				

*UV = 320 - 390 nm; VIS = 405 nm, RT = Raumtemperatur

Kamerasysteme / ADAS

Moderne Fahrzeuge besitzen eine Vielzahl von optischen Sensoren: Kameras unterstützen beim Einparken und Rückwärtsfahren, Assistenzsysteme helfen bei der Schilderkennung, beim Spurhalten oder Abbiegen. Diese Kameras sind so klein, dass sie nicht verschraubt werden können. Spezialklebstoffe, die auf die jeweiligen Materialien abgestimmt sind, verkleben die Gehäuse und fixieren die Linsen. Neben der Gehäuseverklebung kommen Klebstoffe zur Optikverklebung zum Einsatz, z.B. Filter, Linsen oder beim Active Alignment.

Lidarsysteme

Weitere optische Sensoren, die für Assistenzsysteme genutzt werden, sind Lidarsensoren. Hier erfüllen unsere Klebstoffe hohe Anforderungen: Zum Beispiel müssen Bauteile unterschiedlicher Materialien dichtend und spannungsfrei verklebt werden, ohne Einfluss auf deren Leistungsfähigkeit zu haben. Und da die Sensoren häufig im Außenbereich eingesetzt werden, kommen neben des Ausgleichens starker Temperaturschwankungen noch Anforderungen an Chemikalienund Salzbeständigkeit hinzu.

Klebstoffausw	Klebstoffauswahl für Kamera- und Linsensysteme										
Klebstoff	Anwendung	Viskosität [mPas]	Basis	Aushärtung*	Eigenschaften						
Vitralit® 1860	Active Alignment, Glasklebstoff	35.000 - 50.000 Rheometer 10s ⁻¹	Acrylat	UV/VIS	Geringer Wärmeausdehnungskoeffizient (CTE), geringer Schrumpf						
Vitralit® E-1671 T	Lidar & Radar	40.000 - 55.000 Rheometer 10s ⁻¹	1K-Epoxid	UV/thermisch	Standfest, sehr geringe Wasseraufnahme						
Vitralit® E-4731	Lidar & Radar, Flexibles System	900 - 1.500 LVT Sp. 3/30 rpm	Acrylat	UV/VIS	Spannungsausgleichend, ausgezeichnete Haftung auf polymeren Werkstoffen						
Vitralit® E-VBB 1	Gehäuseabdichtung insbeson- dere Radar	1.300 – 1.600 Rheometer 10s ⁻¹	Acrylat	UV/VIS	Hohe mechanische Flexibilität, spannungsausgleichend						
Vitralit® UC 1535	Verklebung von Glaslinsen und Kameras	28.000 - 38.000 Rheometer	1K-Epoxid	UV	Transparent, geringer Ionengehalt (Semicon-grade), hart und kratzfest						
Vitralit® UC 1536	Verklebung von Glaslinsen und Kameras	55.000 - 70.000 Rheometer 10s ⁻¹	1K-Epoxid	UV	Transparent, hochviskose Variante von Vitralit 1535						
Vitralit® UC 1658	Diffraktive optische Elemente	75 - 200 LVT Sp. 2/30 rpm	1K-Epoxid	UV	Mechanische Flexibilität, ausgezeichnete Haftung auf polymeren Werkstoffen						
Vitralit® UD 5134	Verklebung von Linsen ans Gehäuse	15.000 - 25.000 Rheometer 10s ⁻¹	Acrylat	UV/VIS/ thermisch	Geringer Wärmeausdehnungskoeffizient (CTE), geringer Schrumpf, geeignet für schwer verklebbare Kunststoffe						
Vitralit® UD 8057	Optischer Verguss, Verklebung von optischen Komponenten	2.000 - 4.000 Rheometer 5s ⁻¹	Acrylat	UV/VIS/ Feuchte	Feuchtenachhärtend, hoch transparent, vergilbungsarm						

*UV = 320 - 390 nm; VIS = 405 nm, RT = Raumtemperatur

8

Optische Systeme und Lichtmanagement Interior Design und CIPG-Dichtungen

Micro Lens Arrays (MLA) für Light Carpets

Ein besonderes Feature sind Light Carpets, die die Automarke oder andere Designs auf den Boden unterhalb der Türen auf den Boden projizieren. Dies wird mit speziellen MLA-Klebstoffen erreicht, die das Licht großflächig streuen können. Durch spezifisch angepasste Brechungsindizes werden somit individuelle Linsensysteme hergestellt. Diese zeichnen sich durch eine sehr hohe Vergilbungsstabilität aus. Ihre Fließeigenschaften sind so eingestellt, dass kundenspezifische Linsendesigns ermöglicht und zum Beispiel im Imprintverfahren hergestellt werden können.

Klebstoffausv	Klebstoffauswahl MLA & Light Carpets									
Klebstoff	Anwendung	Viskosität [mPas]	Basis	Aushärtung*	Eigenschaften					
Vitralit® UC 1632	MLAs und Light Carpets	80 - 100 LVT Sp. 2/30 rpm	1K-Epoxid	UV	Ausgezeichnete Glashaftung, formstabil, reflowbeständig, vergilbungsstabil					
Vitralit® UC 1633	MLAs und Light Carpet	170 - 230 Rheometer 10s ⁻¹	1K-Epoxid	UV	Ausgezeichnete Glashaftung, formstabil, reflowbeständig, hohe Vergilbungsstabilität					
Vitralit® UC 1658	Diffraktive Diffusoren, MLA Imprint	75 - 200 LVT Sp. 2/30 rpm	1K-Epoxid	UV	Mechanische Flexibilität, ausgezeichnete Haftung auf Polymeren, geringer Antimongehalt					

*UV = 320 - 390 nm; VIS = 405 nm, RT = Raumtemperatur

Black&Light

Schwarze Klebstoffe sind besonders bei optischen und optoelektronischen Systemen gefragt, bei denen eine hohe optische Dichte gefordert ist. Bei diesen Anwendungen sollen Klebstoffe beispielsweise Reflexionen minimieren (Light Shielding) oder bestimmte Transmissionswerte für Sensoren erzielen. Herkömmliche schwarze Klebstoffe absorbieren einen hohen Prozentsatz der Lichtintensität und können somit nicht in dickeren Schichten mittels UV-Licht ausgehärtet werden. Mit der neuen "Black & Light"-Technologie von Panacol können schwarze Klebstoffe nun in tieferen Schichten mittels UV-Licht ausgehärtet werden.

Black & Light K	Black & Light Klebstoffe									
Klebstoff	Anwendung	Viskosität [mPas]	Basis	Aushärtung*	Eigenschaften					
Vitralit® BL UC 1101	Linsenverklebung Lichtabschirmung	3.500 - 7.000 Rheometer 10s ⁻¹	1K-Epoxid	UV	Tiefe Durchhärtung bis 1,3 mm					
Vitralit® BL UC 1102	Linsenverklebung Lichtabschirmung	3.500 - 7.000 Rheometer 10s ⁻¹	1K-Epoxid	UV	OD-Wert 4 bei 0,45 mm Glop Top					
Vitralit® BL UC 1103	Linsenverklebung Lichtabschirmung	3.500 - 7.000 Rheometer 10s ⁻¹	1K-Epoxid	UV	Hohe OD-Werte bis zu 6					

*UV = 320 - 390 nm; VIS = 405 nm, RT = Raumtemperatur

Interior/Dashboard

Kunden, die sich ein Auto kaufen, legen gerade bei der Innenausstattung einen hohen Wert auf Optik und Wertigkeit. So muss vor allem das Armaturenbrett vom Design überzeugen und attraktiv aussehen. Aber nicht nur das Optische spielt dabei eine Rolle, auch mechanische und chemische Widerstandsfähigkeit sowie die Fertigungseffizienz sind gefragt. Kleben ist die Verbindungstechnik, die im Hinblick auf diesen Anforderungskanon in der Innenraum-Anwendungen seine Stärken voll ausspielen kann.

Klebstoffausw	(lebstoffauswahl für Interieur								
Klebstoff	Anwendung	Viskosität [mPas]	Basis	Aushärtung*	Eigenschaften				
Vitralit® 1655	optischer Verguss	150 - 300 LVT Sp. 2/30 rpm	1K-Epoxid	UV/thermisch	Flexibel, feuchtebeständig				
Vitralit® UC 6684	Verguss von Kavitäten im Interior-Lighting	1.500 – 2.500 LVT Sp. 3/30 rpm	1K-Epoxid	UV/VIS	Transparent, kratzfest				
Vitralit® UD 8051	Randversiegelung von Bedienelementen	11.000 - 14.000 Rheometer 10s ⁻¹	Acrylat	UV/VIS/ Feuchte	Dual härtend, schwarz				

*UV = 320 - 390 nm; VIS = 405 nm, RT = Raumtemperatur

Cured-In-Place-Gaskets (CIPG)

CIPG schützen eingehauste Elektronikbauteile vor Staub, Feuchtigkeit, Temperatur oder aggressiven Kontaktmedien. Applikationsbeispiele sind elektronische Steuergeräte (ECU), Kameras, Sensoren, On-Board-Ladegeräte (OBC) und Battery Disconnect Units (BDU). Im Gegensatz zu einer Flüssigdichtung erfolgt die Weiterverarbeitung erst nach vollständiger Aushärtung. Die Dichtwirkung erfolgt durch Flächenpressung auf das CIPG und wird i.d.R durch zusätzlichen Kraft- oder Formschluss verstärkt. Da die Dichtraupe eine höhere Adhäsion zum Bodensubstrat als zum Deckel aufweist, sind selbst häufigere Demontageprozesse möglich, ohne das Material zu beschädigen.

Klebstoffausw	Klebstoffauswahl für Flüssigdichtungen und CIPGs									
Klebstoff	Anwendung	Viskosität [mPas]	Basis	Aushärtung*	Eigenschaften					
Vitralit® CIPG 60102	Gehäuseabdichtung	15.000 - 40.000 Rheometer 10s ⁻¹	Acrylat	UV/VIS	Flexibel, gutes Rückstellvermögen					
Vitralit® 5140 VT	Abdichtung	5.000 - 10.000 Rheometer 10s ⁻¹	Acrylat	UV/VIS	Flexibel, gute Wechselklima- und Feuchtebeständigkeit					

*UV = 320 - 390 nm; VIS = 405 nm, RT = Raumtemperatur

10 11

Prozesslösungen mit Hönle UV-Technologien

Die Dr. Hönle AG ist ein international agierender Anbieter von UV-Technologie und bietet Aushärtegeräte mit UV-LEDs sowie mit konventionellen Mitteldruckstrahlern an. Hönle und Panacol legen größten Wert auf gemeinsames Forschen und Entwickeln. Die Kombination dieser jahrzehntelangen Erfahrung führt zu optimal aufeinander abgestimmten Hightech-Systemprodukten für Klebeanwendungen.

LED Punktstrahler

Hochintensive punktförmige UV-Bestrahlung

LED Aushärtekammern

Zuverlässiger Schutz vor UV-Strahlung

LED Linienstrahler

Hochleistungs-Arrays mit individueller Länge

Convey LED LED Transportbänder

Frei kombinierbar mit LED Powerline oder LED Spot für hohen Output

LED Flächenstrahler

Homogene Lichtverteilung mit hoher Intensität

UV Meter

UV-Messtechnik

Messung von Intensität und Dosis zur sicheren Prozessüberwachung

UV Quellen	Abmessung in mm	verfügbare Wellenlänge in nm	Intensität in mW/cm²	Kühlung
LED Punktstrahler	Lichtaustritt bis zu Ø 20	365/385/405	bis zu 20.000	luftgekühlt
LED Flächenstrahler	Lichtaustritt 20x20 / 40x40 / 100x100 / 200x50	365/385/395/405/460	bis zu 30.000	luft- und wasserge- kühlt
LED Linienstrahler	Lichtaustritt Breite 10/20/40, Länge variabel	365/385/395/405/460	bis zu 25.000	luft- und wasserge- kühlt
LED-Aushärtekammern	Innenmaß 180x180 / 350x350	365/385/395/405/460	bis zu 5.000	luftgekühlt
LED-Transportbänder	Bahnbreite 110 - 520	365/385/395/405/460	bis zu 25.000	luft- und wasserge- kühlt

Panacol-Elosol GmbH Stierstädter Straße 4

61449 Steinbach GERMANY Phone: +49 6171 6202-0 info@panacol.de www.panacol.de

Eleco Panacol – EFD 125, av Louis Roche

Z.A. des Basses Noëls 92238 Gennevilliers Cedex FRANCE Phone: +33 1 47 92 41 80 eleco@eleco-panacol.fr www.eleco-panacol.fr **Dr. Hönle AG**Nicolaus-Otto-Straße 2
82205 Gilching
GERMANY
Phone: +49 8105 2083-0

uv@hoenle.de www.hoenle.com

Panacol-Korea Co., Ltd. #707, Kranz Techno 388 Dunchon-daero Junwon-gu, Seongnam Gyeonggi-do, 13403 KOREA Phone: +82 31 749 1701 moon@panacol-korea.com www.panacol-korea.com Panacol-USA, Inc. 142 Industrial Lane Torrington CT 06790 USA

Phone: +1 860 738 7449 info@panacol-usa.com www.panacol-usa.com

Hoenle UV Technology Trading (Shanghai) Co., Ltd Room 821, No. 800 Cimic Building Pudong Shanghai 200120, CHINA Phone: +86 21 64 73 02 00 info@hoenle.cn www.panacol.cn

Operating parameters depend on production characteristics and may differ from the foregoing information. We reserve the right to modify technical data.© Copyright Panacol-Elosol GmbH. Updated 04/2024. Image Credits: Adobe (p. 9 middle); Dr. Hönle AG (p. 12); all others: Panacol-Elosol GmbH